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1. Introduction 

A number of published studies document that the stability of the financial system 

as a whole is crucial not only to the financial industry itself but also to the real 

economy. Importantly, monitoring of the whole financial system (and not just the 

banking industry) is needed to guarantee its soundness. As the 2007-2012 crises 

(corporate and sovereign) have highlighted a key factor affecting the stability of the 

financial system and consequently the real economy is the level of systemic risk. 

Therefore, the accurate measurement of this level is of crucial importance for 

regulators and investors alike.  

As a consequence of this fact, a large literature has explored many systemic risk 

measures; see for instance Bisias, Flood, Lo, and Valavanis (2012). The measures are 

usually defined either at the aggregate system level or at the individual-firm level. In 

the latter case, systemic risk can be thought as driven by both a common-factor 

exposure to market-wide shocks and additional exposures to other factors, observed 

and unobserved. No doubt, higher exposures to the common factor result in a higher 

probability of joint failures in the system, leading to a higher level of systemic risk. 

However a common factor only can account for the systematic component of systemic 

risk (Das and Uppal, 2004), but cannot capture the correlation stemming from large 

and infrequent changes (e.g. the unexpected failure of a major bank). In this vein a 

promising approach suggesting the relevance of tail dependence effects arising from 

exposure to unobservable covariates is outlined in Das, Duffie, Kapadia, and Saita 

(2007). In a tail dependence setting, the arrival of (bad) news about one firm (extreme 

negative stock returns) causes a jump in the conditional distribution of hidden 

covariates, and therefore a (negative) jump in the stock returns of any other firms 

whose stock returns depend on the same unobservable covariates. In fact some recent 

papers give support to the role of the tail dependence effects exposure providing extra 
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explanatory power to the phenomenon of joint defaults in addition to the impact of the 

exposure to the common factor.
1
 Therefore, the case for considering both components 

(common factor and tail dependence effects) of systemic risk seems compelling, yet it 

has received scarce attention until now. In fact, there are no studies, as far as we know, 

approaching the modeling of systemic risk with exposures to a common factor and to 

a tail dependence effects factor using a structural-form approach. Our paper is a first 

attempt to fill this gap in the literature. 

Specifically we add a correlated jumps factor (our proxy for tail dependence 

effects) into the standard Merton (1974) framework. In doing that, we are able to 

model tail dependence effects by means of the correlation of tail risks arising from 

stock returns’ extreme negative co-movements. Our model allows for the 

firm-specific impact of infrequent and extreme events. When a jump occurs, its 

impact is in the same direction for all firms (either positive or negative), but its size 

and volatility are firm-specific. Additionally, we refine the methodology proposed by 

Das and Uppal (2004) to capture joint tail risk behavior over time.
2
 We consider the 

financial industry to be composed of different sectors (Commercial Banks, 

Brokers-Dealers, Insurance Companies, and Others) and study the systemic risk 

measures within each sector. Based on our model, we develop three indicators of 

systemic stress in the financial industry: (1) DD, the average distance-to-default 

within a given sector; (2) NoD, the number of joint defaults in a given sector; and (3) 

                                                       
1 For example, Giesecke and Kim (2011) provide strong evidence for risk increases in the U.S. 

financial system, after controlling for the exposure of firms to observable risk factors for the period 

from 1998 to 2009. Moreover, Jorion and Zhang (2009) state that large financial firms have deeper 

networks of creditors, illustrating that the failure of a large financial institution can cause ripple effects 

throughout the economy (e.g., Lehman Brothers). Das et al. (2007) observe that traditional credit risk 

models, where correlations are only induced by common factors, do not fully capture the clustering in 

default correlations. Default times tend to concentrate in some periods of time in which the probability 

of default of all firms is increased and which cannot be totally, or even partially, explained by the firms’ 

common dependence on some macroeconomic factors (Giesecke (2004), Giesecke and Goldberg 

(2004), Elsinger et al. (2006a,b)). 
2 The behavior of joint tail risk is identified by the intensity of correlated jumps and firm-specific jump 

size. 
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ESR, the ratio of the aggregate expected shortfall to the aggregate asset value in a 

given sector. 

In the empirical application, we employ stock market data because of its leading 

role in the price discovery process as exemplified by anticipating trends in subsequent 

failures (Lehar, 2005) or changes in supervisory ratings four quarters in advance 

(Krainer and Lopez, 2001) and among other evidence.
3
 Specifically we focus on the 

U.S. financial industry and on the stock returns of the ten largest institutions within its 

four major sectors: Depositories, Broker-Dealers, Insurance Companies, and Others. 

The basic reason of concentrating on the biggest firms is their crucial contribution to 

systemic risk.
4
 The sample spans from January 1996 to December 2011. The ten 

largest institutions in each sector are not the same over time and therefore our sample 

contains 25 Depositories, 24 Broker-Dealers, 22 Insurance firms and 31 Others. Our 

empirical findings confirm that simultaneous extreme negative movements across 

large financial institutions are stronger and more frequent in bear markets than in bull 

markets. We also show that the likelihood of tail dependence dramatically increased 

during the financial crisis of 2007-2009. Disregarding the impact of the tail 

dependence effects element underestimates the measurement of the systemic risk level 

especially during weak economic times. 

We further analyze whether our systemic risk measures are leading indicators of 

alternative measures based on a model including only common factor effects, or a 

measure based on a public financial stress index, the St. Louis Fed Financial Stress 

                                                       
3 A number of papers support the idea of equity market information leading the credit risk price 

discovery process. Cifuentes, Ferrucci, and Shin (2005) claim that the stock returns are likely to be 

strongly negative before bad credit events. Zhang, Zhou, and Zhu (2009) observe that credit default 

swaps are sensitive to jumps on equity returns. Forte and Peña (2009) document that the equity market 

leads both the CDS and bond market in the price discovery process. 
4 For example, Acharya, Pedersen, Philippon, and Richardson (2010) show that the top six, in terms of 

contribution of each firm’s systemic risk, are also in the top seven in terms of total assets. Recent 

studies support size as the major indicator of systemic importance, e.g., Brunnermeier and Pedersen 

(2009). Furthermore the recent evidence also shows that daily stock return correlations among large 

financial institutions track the level of systemic risk (Patro, Qi, and Sun, 2012). 
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Index (STLFSI). We show that including the tail dependence effects usually improves 

forecasting power in comparison with the benchmark model. Measures based on the 

Broker-Dealers (DD, NoD) and Insurance (ESR) sectors provide some extra 

forecasting power with respect to the STLFSI.  

This study extends current literature in several ways. First, regarding the 

systemic risk measures, Lehar (2005) and Suh (2012) consider asset correlations 

which give equal weight to both small and large returns. We however argue that the 

phenomenon of co-jumps provides important information in assessing the level of 

systemic risk.
5
 Second, although it is not new to include jumps in the Merton Model, 

e.g. Zhou (2001), the traditional jump-diffusion model only allows for individual-firm 

jumps both in their arrival time and in their size. Our model instead assumes that the 

arrival time of jumps is coincident across all firms and, conditional on a jump, the 

jump size and its volatility is firm-specific. In doing so, we can model tail dependence 

effects arising from common exposures to extreme events. An especially interesting 

example is the unexpected failure of a major firm operating in a given sector. Third, 

we refine the Balla, Ergen, and Migueis (2012) extreme dependence-based measure of 

systemic risk by using a more robust statistical methodology.
6
 Our study extends the 

results in Acharya et al. (2010) who present an expected-shortfall-based model and 

the CoVaR of Adrian and Brunnermeier (2010).
7
 Our study is also related with 

Giesecke and Kim’s (2011) model, which is based on a reduced-form framework 

which captures the influence of market-wide and sector-specific risk factors, and of 

                                                       
5 Bae, Karolyi, and Stulz (2003) argue that one would expect large negative returns to be more 

influential in a way that small negative returns are not, and extreme dependence is hidden in traditional 

correlation measures by the large number of days when small shocks happen. 
6 Balla, Ergen, and Migueis (2012) apply extreme value theory and study only the U.S. banking sector 

whereas we include co-jumps in the Merton Model. Our empirical application is also more 

comprehensive. 
7 Specifically, they define an institution’s contribution to systemic risk as the difference between the 

CoVaR conditional on the institution’s being in distress and the CoVaR at the median state of the 

institution. 
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spillover effects. However we take a structural-form approach, and consider two 

effects (common factor and tail dependence) to characterize their three factors.   

Summing up, our contributions are as follows. First, we propose a new 

structural-form model by including both a common factor exposure and a tail 

dependence effects exposure. The model captures realistic time-varying 

characteristics in extreme stock return correlations, overcoming the limitations of 

standard models of portfolio credit risk due to their inability to capture the fact that 

higher default correlations occur during bad economic times. Specifically our model 

allows for the firm-specific impact of infrequent and extreme events. Second, we 

develop a set of alternative systemic risk indicators according to different perspectives 

on system-wide stability. Third, we provide empirical results on the U.S. market 

during the period 1996-2011, and report three key findings: (1) neglecting tail 

dependence induces a downside bias in systemic risk measures; (2) considering tail 

dependence effects improves the model’s forecasting ability; (3) systemic risk 

measures based on the Broker-Dealer and Insurance sectors lead the public financial 

stress index by a month in advance on average. 

    The rest of paper is organized as follows. Section 2 develops the structural-form 

model with both common factor and tail dependence effects terms. Section 3 presents 

the methodology and the systemic risk measures. Section 4 describes the data. Section 

5 reports the empirical analysis. Some robustness tests are provided in Section 6. 

Section 7 concludes.   

 

2. The Merton Model with Co-Jumps 

2.1. Asset returns with a common factor and co-jumps 

    This paper is part of an emerging literature positing bottom-up models of default 

correlations based on modeling the asset value of an individual financial institution as 
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being exposed to an observable common factor, tail dependence effects and an 

unobservable individual factor. Our model is closely related to Suh’s (2012), where 

the common factor is featured by a GARCH process and added into the pure-diffusion 

asset returns process.  

    We extend the specification of his model by incorporating co-jumps that occur 

across individual stocks. This is our proxy for tail dependence effects. In order to 

capture the correlated nature of these jumps, we impose two restrictions. One, the 

jump is assumed to arrive at the same time across all firms; two, conditional on the 

jump moving in a given direction (i.e. positive or negative), the jump’s size and 

volatility are assumed to be firm-specific. The two features of the data that we wish 

our model to capture are (1) correlation between stock returns and a common factor, 

and (2) infrequent but large changes in stock returns through a jump component. 

Let Vj,t and Sj,t be the firm j’s asset value and stock price, respectively, at time t. 

Vj,t is not observable, but can be implied from Sj,t on the basis of structure of Merton’s 

model. Let Xt, be the common factor. We consider a discrete-time economy for a 

period of [0,T] where trading takes place at any of the n+1 trading points 0, Δt, 

2Δt,…,nΔt where T
t

n
  . We denote the process of the logarithm of asset return 

(  , , , 1logj t j t j tv V V  ) as follows. 

  ,, j tj t j j tv x r w      ,                            (1) 

 , , ,j t j t j jw w Q N t Q                                 (2) 

 , ~ 0,j t jw N  .                                     (3)   

The j , tx , and 
,j tw  in Eq. (1) represent the mean of firm j’s log return, the 

common factor, and the exposure to other factors. In order to capture the impact of 
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co-jumps across firms’ assets, we partition
,j tw into two components displayed in 

Eq.(2). Specifically, 
,j tw is the idiosyncratic factor that follows a certain kind of 

multivariate distribution without considering extreme dependence,
8
 where  jQ N t  

and the adjustment term, 
jQ 

9
 account for the tail dependence exposure term. This 

term allows the firm’s asset value to jump when its equity price suddenly suffers a 

large movement due news arrival. For instance, extreme stock returns in one given 

firm may cause a jump in the conditional distribution of hidden covariates, and 

therefore a jump in the stock returns of other firms whose stock returns depend on the 

same unobservable covariates  

Given our goal of modeling large changes in prices as occurring at the same time 

across firms’ asset returns, we assume that the arrival of jumps is coincident across all 

firms’ asset returns; that is    jN t N t   , and  N t  is the standard Poisson 

jump counting process with joint mean and variance,      E N t Var N t    . 

We denote jQ  as the random jump amplitude on the log-return if the Poisson event 

occurs. Furthermore, let jQ and  N t be mutually independent, and  jQ N t  is a 

Poisson random sum of normal random variables. That is, 

   
 

 
1

j

N t
k

j

k

Q N t Q t




   ,                          (4) 

where      2~ ,
j

k

j jQ t N a b  for 1, 2,...,k  and  N t  is a Poisson random 

variable with parameter  . We define tx  (  1logt t tx X X  ) as the log-return of 

                                                       
8 The specification of ,j tw  will be described in the following section.  

9 We subtract 
t

Q , where  
t t

Q E Q , to impose the zero mean Poisson process. 
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the common factor. Our setting implies that the distribution of the jump size is 

asset-specific in its mean and volatility, but the jump arrives at the same time for all 

firms. With the setting of our model, a realization of one Poisson process triggers 

simultaneous large movements across multiple companies. 

For the dynamics of the common factor, we employ a GARCH-type model.
 

Specifically, following Heston and Nandi (2000), the common factor is, under the 

physical measure P, modeled as  

P

t t t tx r h h    ,                                (5) 

 
2

1 1 1t t t th h h          ,                       (6) 

where r is the continuously compounded interest rate for the time interval between t 

and t-∆ and t is a standard normal disturbance, th  is the conditional variance of the 

log return between t and t-∆.
10

 Notice that the conditional variance of an asset return 

becomes time-varying, i.e., 

  2 2 2

, 1 ,
ˆ|j t t j t j t j jVar v h b                       (7) 

Where 2 2 2ˆ
j j jb a b  . The derivation is provided in Appendix A1.  

 

2.2. Structural-form model with factor-jump-diffusion process 

We define equity S under the risk-neutral measure (RN) as a call option with 

maturity T as follows:  

   , , ,max ,0 ,
r T t RN

j t j T j TS e E V D
    

 
 

where ,j tS  denotes the equity price of firm j at time t. Following Duan (1995) we 

                                                       
10 We set r to be constant during a certain period of time, by using the mean of the risk-free interest 

rate. This is defined as the 1-year Treasury constant maturity rate obtained from the US Federal 

Reserve and divided by 252. 
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assume that the risk-neutral measure RN satisfies the locally risk-neutral valuation 

relationship (LRNVR) in which the expected return under the RN measure is the 

risk-free rate, but the one-period ahead conditional variance of the return stays the 

same under the P and RN measures. Adopting the same assumption, Heston and 

Nandi (2000) show that under the RN measure, we have: 

1
,

2
t t t tx r h h                                     (9) 

2

1 1 1

1

2

P

t t t th h h       

  
       

  
.              (10) 

Heston and Nandi (2000) derive the following conditional generating function of the 

future common factor: 

      1exp ; , ; ,t T t tf E X X A t T B t T h    
    

,        (11) 

where the coefficients are recursively determined as follows: 

 ; , 0A T T   ,                                                  (12) 

        
1

; , 1; , 1; , ln 1 2 1; ,
2

A t T A t T r B t T B t T              ,   (13) 

 ; , 0B T T   ,                                                  (14) 

     
 

 

2

2

1
1 2; , + + +1; , +
2 1-2 +1; ,

PB t T B t T
B t T

 
      

 



  .            (15) 

Utilizing these facts, we derive the conditional generating function for asset values. 

First, we note that under the RN measure, 

    ,

,

,

log log ,
j T TT

j j j j t j

j t t

V X
r r Q T t W Q N T

V X
                 (16)

  

where 
, , ,

T

j t j t t j t n tW w w      and        2N T N t N t N n t       .
11

  

                                                       
11 Bates (1991) shows that that the difference between risk-neutral parameters and true parameters of 

j
Q  and N  is small either from qualitative or quantitative aspect. Thus, we assume

j
Q that obtained 
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Then, we can write: 

    ,

, ,

T
j j j t jj j

r r Q T t W Q N T

j T j t t TV V X e X
             

 .              (17) 

Therefore, we can derive the conditional generating function for asset values: 

          
2 2

, ,

j j jj j
r r Q T t T t Q N T

j t j T j t t j tg E V V X e f E e
         

           
,    (18) 

where 
    2 21

exp exp 1
2

jQ N T

t j jE e T t a b


  
                

. See Appendix A2 for 

details. From the assumption that equity is valued as a European call option, we have 

the equity valuation formula: 

   
     

, , ,

, ,

, ,
0 0

max ,0

11 1 1
     Re Re

2 2

r T t RN

j t t j T j T

i ir T t
j T j j T j

j t j t

S e E V D

D g i D g ie
V d D d

i i

  
 

   

 

    
 

  
 

    
               

 
, 

(19) 

where  jg   is obtained from  jg   by replacing 
P

  with 1 2  and   with 

 1 2P      .
12

 

 

2.3. Dynamics of individual factors 

    The unobservable individual factors ,j tw  may be correlated across firms and 

over time. In particular, we assume that the vector consisting of individual factors 

1, ,t t N tw w    w follows a multivariate normal distribution with time-varying 

covariance matrix i.e.,  

 ,t tMVNw 0 Ω ,                         (20) 

where the (j,k) element of tΩ  is ,jk t . Then, we apply the dynamic conditional 

                                                                                                                                                           
under physical probability is as the same as it under risk-neutral probability.  
12 The debt is assumed to grow at the risk-free interest rate, following Lehar (2005). 
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correlation (DCC) model of Engle (2002) to estimate the time-varying asset return 

correlations of idiosyncratic components for the dynamics of tΩ .
13

 

For estimating the time-varying covariance matrix tΩ , we first use estimates 

ˆ
j for institution j to estimate the time series  ,j tV and ,j tv and then obtain the 

residuals ,
ˆ

j tw , which are defined as: 

     , ,
ˆˆ ˆ

j t j t j j t j jw v x r Q N t Q         .          (21) 

 

2.4. Estimation 

    Parameter estimation proceeds in three steps. First, we estimate the common 

factor parameters  , , ,     in the system of (5) and (6) via the maximum 

likelihood method given the common factor data series. Second, we identify  , ja , 

and jb as in Das and Uppal (2004).
14

 Third, we make two assumptions for the 

estimation of the parameters related to the asset return process of individual 

institutions. We assume that the maturity of the implied call option is one year in line 

with previous literature (e.g., Ronn and Verma (1986), Lehar (2005), and Suh (2012)). 

We use the sum of a half of the long-term debt plus the short-term debt as a proxy for 

the debt amount ,j tD  within the assumed maturity of 1 year in accordance with 

                                                       
13 This is different from approaches in Suh (2012) and Lehar (2005), where the former features the 

correlation of individual factors based on diagonal-VECH, while the later uses an 

exponentially-weighted moving average scheme. We claim that DCC is a better model in measuring 

asset correlations. First, many papers adopt DCC rather than other types of multivariate volatility 

process models. For example, the DCC method is superior to historical measures in that the correlation 

output refers to conditional rather than backward-looking correlation measures (Huang, Zhou, and Zhu, 

2012. And second, other advantage of using the DCC method is that it allows the correlation matrix to 

be heterogeneous, i.e., the pair wise correlation coefficients can be different for each pair of firms. 
14 Specifically, the correlated jump intensity is derived from stock market information. As in Das and 

Uppal (2004), we assume a jump-diffusion process for the stock return process, and we estimate the 

parameters by minimizing the Root Mean Square Error (RMSE) of two metrics based on co-skewness 

and excess kurtosis.     
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KMV’s methodology. To be consistent with the literature (Duan (1994) and Duan 

(2000))
15

 we use historical returns to estimate the parameters. For one institution at a 

time via the maximum likelihood method, we estimate the parameters 

 , ,j j j j     for individual institution j’s asset return. Given institution j’s equity 

price and debt data 
,1 ,j j j nS S

   S ,
,1 ,j j j nD D

   D , and common factor data 

 1 nx x x , we derive the following log likelihood function as follows 

   

   

,2

, ,
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where ,j tV , ,j t are the solutions to (19) and (7) and ,j tv is the log return of ,j tV . 

 

3. Methodology and Systemic Risk Measures 

In the following section, we take the model that only accounts for the exposure 

to the common factor as the benchmark model. In fact, our model nests the 

benchmark model when λ=0. We compute risk indicators both based on our model 

and the benchmark model. The methodological procedure follows.  

 

3.1. Monte Carlo Simulation 

We employ Monte Carlo Simulation because no analytical solution is available 

                                                       
15 We use the 1-year Treasury constant maturity rate obtained from the US Federal Reserve as the 

risk-free interest rate. 
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for the systemic risk measures over a multi-period time horizon. We draw standard 

normal random variables and then simulate a hypothetical future common factor 

realization according to (5). Next we generate the random variable of co-jumps by 

drawing from normal random variables with a pre-specified mean and standard 

deviation of firms’ jump magnitudes, and a Poisson random variable with the 

pre-specified intensity λ. Finally we draw multivariate normal random variables as 

specified by (20) and repeat the process 10,000 times. 

 

3.2. Rolling windows 

A rolling window approach is applied to study the extent to which systemic risk 

measures vary over time and to avoid the problem of look-ahead bias. To study this, 

we use a one-year rolling window updated every month. Specifically, we construct a 

subsample for month t, in which the information during months t, t-1,t-2,…,t-11 is 

used. Then we repeat the calculation for month t+1, rolling the sample one month 

forward. For example, the first subsample corresponding to December 1996 contains 

data from January 1996 to December 1996. Then, the sample is updated by including 

the following month and discarding the first one. In the previous example, the second 

subsample corresponds to January 1997 and contains data from February 1996 to 

January 1997. We chose the monthly updating frequency to balance accuracy with 

computational burden.  

 

3.3. Systemic risk measures 

Not surprisingly, the literature has proposed a plethora of measures of systemic 

risks (see Rodriguez-Moreno and Peña (2013) for a review). The measures should 

detect at least two kinds of situations and cover two different dimensions. Regarding 

the situations, some measures should warn of the persistent build-up of imbalances 
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within the financial sector (based on monthly or quarterly data) and some other 

measures should be able to capture the abrupt materialization of systemic risk (using 

daily or intraday data). Regarding the dimensions, there should be measures based on 

the aggregate market level (e.g. interbank rates, stock market and CDS indexes) as 

well as measures at the level of individual institution. Obviously, no single measure is 

the “best”, and alternative measures may be devised according to the objectives of 

systemic risk analysis. Since our model specifies the dynamics pertaining to both 

individual institutions and their tail-risk connection, it allows the calculation of a wide 

range of systemic risk measures. We develop three alternative indicators:      

 

(1) DD: the average distance-to-default in a given sector over a fixed time-horizon 

 

The DD has been used as proxy for identifying a financial sector’s stability. For 

example, Jokipii and Monnin (2013) and Carlson, King, and Lewis (2011) both use 

DD as the indicator of distress in the financial sector, where the former finds a 

positive link between this measure and real output growth, especially during the 

periods of instability, and the latter suggests that DD is a leading indicator of real 

economic activity (e.g., bank lending standards and terms).  

We compute the DD measure using our structural-form model with and without 

jump effects. In line with the Merton’s DD framework, the DD is built as the 

logarithm of asset value minus the logarithm of debt value, and then divided by the 

standard deviation of this difference. Formally,  

 
 

ln ln

ln ln

T T

T T

E V D
DD

Std V D





                      (24) 

where VT and DT are time T asset’s market value and debt’s face value respectively. 

To be specific, at a given time point t and for every firm j in a given sector, we 
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compute daily simulated asset values for the next six months, generated by Monte 

Carlo simulation. Then we average the difference between log-asset value and 

log-debt value, and we use this as the numerator and then we take the standard 

deviation of this difference as the denominator. We then compute the average sector 

value as the weighted-average of all firms in a given sector, weights based on asset 

size.
16

 We expect that the lower the DD measure, the higher the level of systemic 

risk. 

 

(2) NoD: the number of simultaneous defaults in a given sector over a fixed 

time-horizon. 

The rationale of this measure is that if there is a significant number of financial 

firms default at the same time, the whole financial system (through asset-fire sale 

or/and network contagion), can be severely affected (Lehar, 2005). A financial 

institution is assumed to be in default if the market value of its assets falls below of its 

debt’s face value within the next six months. To be specific, at a given time point t 

and for every firm j in a given sector, we compute daily simulated asset values for the 

next six months, generated by Monte Carlo simulation. Then we compare firm j asset 

value against its debt’s face. If the latter is higher than the former we assume the firm 

j to be in default. We then compute the number of defaulted firms for each sector. We 

expect that the larger the NoD, the higher the level of systemic risk. 

 

(3) ESR: the ratio of the aggregate present value of expected shortfalls to the 

aggregate asset value in a given sector over a fixed time-horizon. 

 

                                                       
16 This is because we assume that the largest institutions should contribute strongly to the overall 

systemic risk in the financial system. 
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This systemic risk measure proposed by Huang, Zhou, and Zhu (2009), is 

associated with the idea of assessing the systemic risk of the financial sector by 

computing the price of the government’s contingent insurance against large default 

losses in the financial sector. Based on our structural-form model, we consider the 

amount of financial institutions’ debt that cannot be covered by themselves as proxy 

for this insurance, and name it expected shortfall. The rationale is that, if all the 

financial institutions’ debt is guaranteed by governments, they must pay to the 

creditors the difference between the face value of debts and the market value of 

financial institutions’ assets.  

Following Lehar (2005), the present value of expected shortfall could be 

regarded as the put option value. In our framework, we compute it by Monte Carlo 

simulation as we have described before. Formally, we compute the present value of 

expected shortfalls, j

tES , of a firm j at time t for a horizon of T as 

   max ,0
r T t j j

T Te E D V
    

 
, where j

TD is the face value of the firm’s debt at time T, 

j

TV  is the market value of the firm’s assets at time T. Moreover, we consider the 

sector-wide distress as the ratio of the sector’s present values of expected shortfalls to 

the sector’s total asset value over the next six months. We call this risk measure ESR, 

and compute it by using the formula of 
j j

t t ti i
ESR ES Asset  . Intuitively, we 

would expect that the higher the ESR the higher the systemic risk level.  

In summary, the indicators rely on intuitive economic interpretations, and we use 

them to illustrate the temporal trend of the overall systemic risk level. In particular, 

DD, NoD, and ESR are attractive because they summarize key determinants of 

systemic risk (firms’ size, firms’ leverage, the dependence between firms and the 

whole market) as suggested in Acharya et al. (2010), as well as the interconnectedness, 
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as suggested in Cummins and Weiss (2010) and Jobst (2012).
17

 The procedure of 

Monte Carlo simulation is repeated for each month from December 1996 to December 

2011, yielding monthly time series for each measure.  

 

4. Data  

 

4.1. Sample Selection 

Our methodology is applied to the sample that comprises large financial 

institutions in the U.S. financial industry between January 1996 and December 2011. 

We choose firms with available daily equity prices and quarterly balance sheet 

information in the CRSP and COMPUSTAT database.
18

 We lag all accounting 

information by 3 months because of reporting delay and substitute missing accounting 

data with the most recent observation prior to it. The quarterly accounting data is 

linearly interpolated between quarterly reporting dates at daily frequency. Firms are 

categorized into four groups according to Acharya et al. (2010) and Brownlees and 

Engle (2011) including: Depositories, Brokers-Dealers, Insurance Companies, and 

Others.
19

 We use daily equity returns given that jumps probably appear more clearly 

in high frequency data.
20

 We select the biggest firms based on their book value of 

total assets at the starting date of each estimation sample for each sector at a given 

time. Furthermore, the sample only contains firms continuously listed in a prior year 

                                                       
17 Cummins and Weiss (2010) propose three primary indicators of systemic risk, including (1) size, (2) 

interconnectedness, and (3) lack of substitutability. Also, Jobst (2012) relates short-term liquidity risk 

to size and interconnectedness.  

18 We collect information of daily equity prices and returns, and outstanding shares from CRSP. We 

obtain information of total assets, debt in current liability, long-term debt due in one year, and 

outstanding shares (if missing in CRSP) from COMPUSTAT.  
19  The four groups are characterized by: (1) Depositories (with 2-digit SIC code of 60); (2) 

Brokers-Dealers (with 4-digit SIC code of 6211); (3) Insurance Companies (with 2-digit SIC code of 

63 or 64); (4) Others (with 2-digit SIC codes of 61, 62 except 6211, 65 or 67). We assign Goldman 

Sachs to the group of Broker-Dealers although its SIC code of 6282, following  Acharya et al. (2010).  
20 Lehar (2005) and Suh (2012) use lower frequency data (monthly and weekly). 
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to ensure a perfect match to the number of observations at firm-level as well as at 

system-level. To avoid survivorship bias, merged or bankrupt entities are also 

included in the sample as long as their equity and balance sheet information are 

available. Our sample contains 25, 24, 22, and 31 firms for Depositories, 

Broker-Dealers, Insurance Companies, and Others, respectively. 

 

4.2. Monthly-interval observations  

By moving the estimation window month by month, we have time-varying 

estimated parameters and risk measures at the end of each month from December 

1996 to December 2011. This sample contains 181 monthly observations for each 

parameter and measure. Appendix B provides descriptions of the firms we use in the 

empirical application. We compute SIZE and LVG (leverage), both at firm-level and 

sector-level, at time t, where the former is the logarithm of the book value of total 

assets (at firm-level), and the logarithm of the summation of all firms in a sector (at 

sector-level); the latter is the quasi-market value of asset divided by market value of 

equity (at firm-level), and the weighted average leverage (at sector-level), weights are 

based on the values of market equity.
21

 

Figure 1 shows the annual returns across sectors as well as for the CRSP 

value-weighted index, which is used to capture the common factor in this paper. The 

sector-level annual return ending at month t for sector k is calculated by using the 

formula of                    
  
    , where        is the firm j’s annual return, and 

       is the weight based on market equity for firm j at the end of month t. 

We observe a similar pattern across industries. All sectors show positive 

performance from 1996 until the end of 1998 where the LTCM crisis appears. There is 

                                                       
21  Following Acharya et al. (2010), LVG is the standard approximation of leverage, where 

quasi-market value of assets is obtained from book value of assets minus book value of equity and plus 

market value of equity.  
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a slow recovery until the burst of the dotcom bubble in March, 2000. Then a sub 

period ensues until 2003 where a recovery gains momentum. Between mid-2005 and 

mid-2007 all sectors show positive performance. Distress symptoms appear around 

July 2007 signaling the starting point of the Subprime crisis, and then the market 

bottoms around March 2009. Then there is a strong rebound since mid-2009. Market 

plunges again around May 2010 and there are no clear recovery signals until the end 

of 2011. Notice that the Others sector’s stock returns seem to be the more volatile of 

all sectors during the last crisis. Overall the returns of the various sectors mimic the 

overall market trend with usually larger volatility. 

[Insert Figure 1 Here] 

Table 1 provides summary statistics by sector. In terms of size there are not clear 

differences across sectors. Leverage is highest in the Broker-Dealers sector (12.26), 

followed by Insurance companies (11.93), Others (11.22) and the least leveraged 

sector by far is Depositories (7.94). The best return/risk ratio is given by 

Brokers-Dealers (0.54), followed by Insurance Companies (0.35), Depositories (0.34), 

and Others (0.32). We classify risk measures by using the sub index “ben” for the 

benchmark-based measures (accounting for common factor only). Measures without 

sub index are based in the full model (common factor plus tail dependence effects). 

The DD (DDben) indicates that the distance to default over the next six months, and 

thus the lower the DD the higher the sector’s systemic risk. This measure for the 

Broker-Dealers sector is the closest to default with an average value of 2.59 (6.01), 

followed by Others, 3.45 (5.51), then by Depositories, 6.31 (8.0) and Insurance 

Companies, 10.99 (12.18). Next the NoD (NoDben) indicates the number of defaults 

among the 10 biggest financial institutions. The sector Others on average has the 

largest number of defaults, 2.38 (1.42), followed by Broker-Dealers, 2.26 (0.96), 

whereas Depositories and Insurance Companies present lower defaults, 0.79 (0.26) 
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and 0.36 (0.23) respectively. As for ESR, (ESRben), which is defined as the ratio of 

sector’s expected shortfalls to the sector’s total assets, Others has the largest value, 

39.90 (15.07), followed by the Broker-Dealers, 22.22 (2.61), whereas Depositories 

and Insurance Companies present lower expected shortfalls, 4.50 (0.34) , and 3.75 

(1.42) separately. So, based on the above three measures the riskier sectors are 

Broker-Dealers and Others, followed by Depositories and finally Insurance 

Companies. Notice that in all cases the measure based on the full model indicates a 

higher level of systemic risk than the measure based on the benchmark model.  

 [Insert Table 1 Here] 

 

5. Empirical Analysis 

 

The empirical analysis is designed to explore the effect of combining two factors 

(common factor and tail dependence effects) on measuring systemic risk. First, this 

section documents the estimation results of co-jumps and of structural-form models. 

In the next section, we present a preliminary comparison between the full-model 

based measures and the benchmark-based ones. Then, we test whether our full-model 

based systemic risk measures are leading indicators of benchmark-based ones and of 

the STLFSI.  

 

5.1. Estimation results 

5.1.1. Tail dependence parameters  

To characterize the sector-level behavior of the tail dependence effects proxied 

by the correlated jumps, we average firm-specific estimates into one single measure 

for the mean and the volatility of the size of co-jump by sector, and denote them as 

mu_coj and std_coj. By means of the rolling window approach, we compute time 
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series of λ, mu_coj, and std_coj.
22

 These estimates describe the properties of 

simultaneous shocks occurred in the equity market. Figure 2 reports these three 

time-varying variables from 1996 to 2011 by sector.
23

  

As for λ, Depositories and Insurance Companies present quite similar behavior, 

moving smoothly and usually below 0.1 before 2006, increasing during 2007, peaking  

(roughly around 0.3), staying high for a while, dropping to the pre-crisis level in the 

mid-2009, and increasing again in the mid-2011. In the case of Broker-Dealers this 

parameter moved steadily and at low levels before 2005, increased slightly in the 

following two years, and peaked (0.2) near Lehman’s failure. After that event it drops 

to the pre-Lehman level, but looks more unstable than before 2005. Finally the λ of 

Others fluctuated quite frequently compared with other sectors before 2006. In 

particular it reaches its peak in the fourth quarter of 2008 (beyond 0.35), and remains 

at a high level (beyond 0.15) for a longer time during 2008-2009 in contrast with 

other sectors. Again we observe there was a clear increase since the mid-2011. 

Overall, across sectors, we find that the intensity of co-jumps began to increase before 

the subprime loan crisis of 2007, reached its peak by the Lehman’s failure, then 

decreased and increased again in mid-2011, in coincidence with the Eurozone crisis. 

Overall, the evidence suggests that the probability of simultaneous jumps is higher 

during crisis times.              

Regarding the average jump size mu_coj, it is close to zero through the whole 

sample period for Insurance Companies. However this is not the case in other sectors. 

Negative jumps appear around Lehman’s bankruptcy, in Broker-Dealers, Others , and 

                                                       
22 For instance in the case of parameter λ , we estimate it for a group of ten largest FIs in each sector 

using data from January 1996 to December 1996, and we assign the value λ calculated in this way to 

December 1996. Then, the procedure is repeated using data from February 1996 to January 1997 and 

the value of λ is assigned to January 1997 and so on.  
23  Specific information about the main systemic events from 2007 to 2011 can be found at 

http://timeline.stlouisfed.org/ 
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Depositories with average sizes of -0.10, -0.07 and -0.05 respectively. Also the Others 

sector suffered negative jumps in the first-half of 2009, which could be attributed to 

events related to the crisis and subsequent bailout of Fannie Mae and Freddie Mac 

given that the Others sector contains many firms related with the mortgage market.
24

  

With respect to the jump’s volatility std_coj its behavior is quite similar across 

sectors, where it was constantly below 0.05 and very stable until the end of 2007, 

started increasing at the beginning of 2008, reached to historically highest level 

around mid-2009, and dropped to lower levels since then.  

All in all the evidence matches our intuition with respect to the model’s 

parameters. In most cases λ and std_coj are higher and mu_coj displays negative 

values during episodes of systemic risk. The implication is that acute stress situations 

in the financial industry are coincident with higher frequencies of simultaneous 

negative extreme jumps in the stock returns of firms included in the industry. 

 [Insert Figure 2 Here] 

Now we examine whether the co-jumps component displays a specific behavior 

during the 2007-2009 crisis. We analyze the results during the period of 2005-2011, 

and compare estimates across three periods: Pre-Crisis period (from July 2005 to June 

2007), Crisis period (from July 2007 to June 2009), and Post-Crisis period (July 2009 

to June 2011). The results are reported in Table 2. The Columns 1, 3, and 5 show the 

average value of λ, mu_coj, and std_coj during the “Pre-Crisis”, the “Crisis”, and the 

“Post-Crisis” periods respectively. The column 2 and 4 reports the results of the 

independent sample mean t-test. For each parameter, the column 2 (column 4) first 

reports the difference of average values between Crisis and Pre-Crisis (Post-Crisis) 

                                                       
24 On March 11, 2009 Freddie Mac announced that it had a net loss of $23.9 billion in the fourth 

quarter of 2008, and a net loss of $50.1 billion for 2008 as a whole. They also announced that its 

conservator has submitted a request to the U.S. Treasury Department for an additional $30.8 billion in 

funding for the company under the Senior Preferred Stock Purchase Agreement with the Treasury. 
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periods with p-values in brackets. Panel A, B, C, and D shows results for Depositories, 

Broker-Dealers, Insurance Companies, and Others. Overall there are significant 

differences between the Pre-Crisis and Crisis periods across all groups. As expected, 

the intensity, and the volatility of co-jumps are higher in the Crisis period and the 

mean of co-jumps is strongly negative in the crisis period.  

[Insert Table 2 Here] 

It is worth noting that the Others sector always presents the highest λ. When 

concentrating on the crisis period, it also has highest value of std_coj (0.13) compared 

with other sectors (0.08), and has the lowest mu_coj (-0.02), followed by 

Broker-Dealers (-0.01). So in the Others sector negative shocks are deeper and more 

frequent and their size is more volatile. Notice the significant increases in λ during 

crisis periods. For example in Depositories, it increases more than threefold in 

comparison with the pre-crisis period (0.13 versus. 0.04), it doubles in size in 

Broker-Dealers (0.06 versus. 0.03) and also increases noticeably in the Others sector 

(0.19 versus. 0.10).  

Summing up, statistical tests support the intuition of higher probability of 

simultaneous negative shocks in the equity market during the 2007-2009 financial 

crisis in comparison with previous and posterior periods.  

 

5.1.2.  Common factor parameters 

The parameters of the common factor component (benchmark model) are μ, δ, 

and ξ, which capture the long run mean of asset returns, the exposure to the common 

factor, and the variance of idiosyncratic factor, respectively. We again average 

firm-level estimates into sector-level variables. To distinguish estimates of the full 

model from those of the benchmark-based model, we use notations of μ_ben, δ_ben, 

ξ_ben, for the latter. Table 3 reports estimates by sector, and results of mean tests 
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between estimates derived from the full model and from the benchmark. There are 

some things worth mentioning. First we observe that both δ and ξ are significantly 

lower than δ_ben, and ξ_ben (see Column 3, 6, and 9 of Table 3). The result is not 

unexpected since, by construction, the term of co-jumps should capture some 

contributions of asset returns from the common factor and from the idiosyncratic 

factor. Therefore a decrease in the magnitudes of δ and ξ compared with the 

benchmark model is likely. Furthermore we find that Insurance Companies has the 

highest exposure to the common factor (0.72), followed by Broker-Dealers (0.59), 

whereas Others have the lower exposure (0.35).   

 [Insert Table 3 Here] 

 

5.2. Systemic risk measures : Preliminary analysis 

This section outlines the stylized facts of the three alternative systemic risk 

measures based on our model and the benchmark. Time series of the risk measures 

from 1996 to 2011 by sector are in the panels A to C in Figure 3. The red (blue) line 

corresponds to the full (benchmark) model.  

[Insert Figure 3 Here] 

5.2.1. DD (distance to default) 

The DD indicates on average how far a firm’s asset value would exceed its 

default point for a given sector, and thus conversely to conventional risk measures, 

the lower the DD the higher the sector’s systemic risk. The DD series are in Panel A 

of Figure 3. Tail dependence effects are of material importance when the red line is 

below the blue line. This is usually the case in all sectors. 

Not surprisingly, we find that the tail dependence effects reduce the distance to 

default during and/or prior to bad economic events. For example, in the Depositories 

sector (see the top-left diagram in Panel A of Figure 3), the tail dependence effects 
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appeared: (1) from the end-1997 to mid-1999 (1997 Asian Crisis, 1998 LTCM 

debacle); (2) from September 2001 to 2003 (9/11 , end of dot-com bubble during 

mid-2000-mid-2003, credit market deterioration in 2002,
25

 and credit market 

deterioration in 2002); (3) from June 2006 (one year prior to the 2007 Subprime loan 

crisis) to mid-2010 (2007-2010 financial crisis); and (4) during the second-half year 

of 2011 (European debt crisis). As for Insurance Companies (see the bottom-left 

diagram in Panel A of Figure 3), the effect existed for the period of 2005-2009 (2005 

automotive-downgrade credit crisis; 2007-2010 financial crisis). As for Others (see 

the bottom-right diagram in Panel A of Figure 3), the effect occurred: (1) from 

mid-1998 to mid-1999 (LTCM debacle), (2) from September 2001 to September 2008 

(9/11, end of dot-com bubble during mid-2000-mid-2003, credit market deterioration 

in 2002, low interest rates and high leverage among financial institutions during 

2002-2004); and (3) during second-half year of 2011 (European debt crisis). In the 

period 2008-2009 the measures based on the full model and on the benchmark model 

signal that the Others sector was very close to default.  

 

5.2.2. NoD (number of defaults) 

The NoD accounts for the number of defaults among the ten biggest financial 

institutions for a given sector. This measure is in Panel B of Figure 3. Tail dependence 

effects are of material importance when the red line is above the blue line. This is 

usually the case in all sectors. 

Tail dependence effects significantly increased the NoD during the 2007-2010 

financial crises across sectors. Before 2007 tail dependence effects are less noticeable 

than in the case of the DD measures. For example, the effect only appears in 1998 and 

                                                       
25 Huang, Zhou, and Zhu (2009) documents that systemic risk exhibited substantial increase during the 

2002 due to the credit market deterioration.  
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2002 for Depositories, and from 1996 to 2003 for Broker-Dealers. Third, we find that 

during 2007-2010 crisis, Others is the most risky sector, with roughly 9 out of 10 

largest firms were expected to default, followed by Depositories (8 out of 10), and 

lastly Insurance Companies (5 out of 10). 

Summing up, this measure again indicates that risks in the financial industry 

increases through the channel of tail dependence in equity market especially in bad 

times.  

 

5.2.3. ESR (expected shortfall ratio) 

The Panel C of Figure 3 reports the time variation of ESR, in which financial 

distress is defined as the ratio of the sector’s expected shortfalls to the its aggregate 

asset value. Tail dependence effects are of material importance when the red line is 

above the blue line. This is usually the case in all sectors. 

The ESR measure displays stronger effects of the tail dependence component in 

recent crisis. For instance, in the Broker-Dealers sector, the NoD measure gives a 

similar level of systemic risk in the cases of the LTCM debacle and in the Lehman’s 

bankruptcy (6 out of 10 defaulting firms), whereas ESR signals a higher level of 

systemic risk in the case of the latter event (200) than in the former (50). The 

empirical evidence suggests that the inclusion of tail risk dependence effect may 

improve the model’s ability to anticipate stress periods. For example, in the Others 

sector, ESR picks up noticeably by October 2007, when Fannie Mae and Freddie 

Mac
26

 had signaled their troubles due to Subprime loan crisis. In the Broker-Dealers 

and Depositories sectors ESR increases by March 2008, around the Bear Sterns failure. 

However ESR_ben does not present a clear upward trend until September 2008.  

 

                                                       
26 Two big mortgage companies belong to this sector. 
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5.3. Predictability 

A key criterion in order to assess the quality of a systemic risk indicator is its 

forecasting power. First, we examine lead-lag relationship between the full 

model-based measures and benchmark-based ones. Next, we use Granger Causality 

tests to study whether our measures are useful in forecasting an index of financial 

distress. We also run Quandt-Andrews (called QA henceforth) breakpoint test for 

assessing whether our measures provide early warning signals prior to the 2007-2010 

financial crisis.
27

 

The financial stress index is the St. Louis Fed Financial Stress Index (STLFSI) 

proposed by Kliesen and Smith (2010).
28,29

 The index is publicly available, and is 

based on a principal components analysis of a broad range of financial prices and 

rates from many different financial markets. Figure 4 shows the monthly time series 

of STLFSI from 12/1996 to 12/2011. Basically, the index shows a local peak near the 

1998 LTCM debacle, smoothly increases between 2001 and 2002 (9/11, dot-com 

bubble), increases from September 2007 (Subprime crisis), reaches its maximum level 

on September 2008 when Lehman declared bankruptcy, and finally presents two local 

peaks in mid-2010 and mid-2011 in coincidence with acute stress periods in the 

Eurozone debt crisis.  

[Insert Figure 4 Here] 

                                                       
27 Similar testing mechanisms are also implemented by IMF (2011). 
28 The STLFSI is constructed by using 18 data series across different financial variables: Interest Rates 

(Effective federal funds rate, 2-year Treasury, 10-year Treasury, 30-year Treasury, Baa-rated corporate, 

Merrill Lynch High-Yield Corporate Master II Index, and Merrill Lynch Asset-Backed Master 

BBB-rated. ), Yield Spreads (Yield curve: 10-year Treasury minus 3-month Treasury, Corporate 

Baa-rated bond minus 10-year Treasury, Merrill Lynch High-Yield Corporate Master II Index minus 

10-year Treasury, 3-month London Interbank Offering Rate–Overnight Index Swap (LIBOR-OIS) 

spread, 3-month Treasury-Eurodollar (TED) spread, and 3-month commercial paper minus 3-month 

Treasury bill.), Other Indicators (J.P. Morgan Emerging Markets Bond Index Plus, Chicago Board 

Options Exchange Market Volatility Index (VIX), Merrill Lynch Bond Market Volatility Index 

(1-month), 10-year nominal Treasury yield minus 10-year Treasury Inflation Protected Security yield, 

and Vanguard Financials Exchange-Traded Fund). Furthermore, the index is built by using principal 

component analysis to extract factors responsible for the co-movement of a group of variables.  
29 We use monthly STLFSI, although the highest frequency is weekly, in order to match the data 

interval used in this paper. 
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5.3.1.  Granger Causality test 

Given that unit roots test for our variables give conflicting results,
30

 we present 

Granger Causality (GC) tests on both levels and first differences. The results are in 

Panel A and B of Table 4 for the former and for the later respectively. All tests are 

implemented with optimally chosen lags and are corrected after controlling for 

heteroskedastic and correlated errors.
31

  

Regarding the GC results for series in levels between the full model (FM) based 

measures and the benchmark based ones (see Column 1 and 2 of Panel A of Table 4), 

FM-based measures lead (usually by one or two months) benchmark-based ones in ten 

cases out of twelve and there are two cases of bidirectional causality. So it seems that 

including the co-jump factor does improve the model’s forecasting power in most 

cases in comparison with the benchmark. Next we analyze the GC results between the 

FM and the STLFSI (see Column 3 and 4 in Panel A of Table 4). In four out of twelve 

cases FM-based measures lead STLFSI whereas the reverse is true in two out of 

twelve cases, and there are three cases of bidirectional causality. Two Broker-Dealers 

sector measures (DD, NoD) and all Insurance sectors’ systemic risk measures lead the 

STLFSI. The usual average leading period is one month. Therefore measures based on 

these two sectors are the most informative as leading indicators. If for instance the 

DD and NoD measures increase in both sectors in a given month a subsequent 

increase in the STLFSI index seems very likely indeed.  

When using first difference data series (Panel B of Table 4), FM-based measures 

lead (usually by one or two months) benchmark-based ones in eight cases out of 

                                                       
30 We employed several unit root tests, including Augmented Dickey-Fuller, GLS Dickey-Fuller, and 

Perron (1997) with structural breaks in the mean, in the trend and in both elements simultaneously. 

Detailed results are available on request. 
31 The optimal number of lags has been chosen using the Schwarz (BIC) criterion. 
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twelve and the reverse is true in two cases. Overall results are largely in agreement 

with the ones obtained with series in levels. In the case of the comparison between 

FM measures and the STLFSI index, in five out of twelve cases FM-based measures 

lead STLFSI whereas the reverse is true in two out of twelve cases. So, in agreement 

with case of series in levels, two Broker-Dealers sector’s systemic risk measures (DD, 

NoD) lead the STLFSI. Also one measure form the Depositors sector (DD) and 

another from the Insurance sector (ESR) seem to have some explanatory power.  

Summing up, in most cases FM-based measures seem to contain more updated 

information than benchmark-based ones. Two measures based on the Broker-Dealers 

sector (DD, NoD) and one measure (ESR) based on the Insurance sector provide some 

leading information on the STLFSI index in all cases (series in levels and in first 

differences).  

 

[Insert Table 4 Here] 

 

5.3.2. QA test 

In addition to test the forecasting power over the whole sample period, it is also 

interesting to explore whether our measures are capable of identifying earlier warning 

signals to the 2007-2010 financial crisis in comparison with benchmark-based 

measures and STLFSI. We apply QA breakpoint test to date structural changes on two 

perspectives: the persistence and the level. Specifically, break dates are identified by 

testing structural changes of the coefficient of autoregressive model with order one 

(AR(1)) for the persistence test, and of the constant term on regressions for the level 

test.
32

 So, the persistence test (the level test) indicates whether the persistence process 

(the mean) shifts from one stable regression relationship to a different one. 

                                                       
32 IMF (2011) reports similar tests. 
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Furthermore, we reduce the sample of 2002-2011 in order to avoid identifying some 

dates that reveal structural changes due to other big economic shocks before 2002 

(such as 1998 LTCM crisis and 9/11 ), but not to the 2007-2010 financial crisis. 

Moreover, in QA test, we estimate breakpoints with 25% trimming percentage, which 

gives the test sample period narrowed down to July 2004-June 2009. This period 

provides a proper testing ground as it covers three years of pre-crisis period and 

crisis-period of July 2007-June 2009, but avoiding the concern that tests might 

identify breakpoints, where risk indicators drop dramatically at the end of crisis, 

rather the ones before or during crisis. Straightforwardly, the one that provides the 

earlier date becomes the best indicator to systemic risk events. 

Table 5 reports turning points for our systemic risk measures, and their lead-lag 

relationship with benchmark-based ones and with STLFSI. We document break dates 

identified based on our measures for the persistence (level) test in first column of 

Panel A (Panel B). We also analyze how many months that our measures lead or lag to 

other measures, by using the positive sign of “+” for lead and the negative sign “ ” 

for lag. The numbers nearby signs are their corresponding leading (lagged) numbers 

of months. There are several noticeable results.   

In terms of the persistence test (Panel A) of Table 5, break dates identified by our 

DD measure across sectors are all prior to July 2007, the time point that the subprime 

loan crisis just started emerging). The earliest two turning points happen in 

Depositories and Broker-Dealers, February 2006 and March 2006 respectively, 

indicating that our best measures had signaled the 2007-2010 crisis at least one year in 

advance. Remarkably they lead to STLFSI by up to three years (35 and 34 months 

respectively) (see Column 3 of Panel A in Table 5). It reminds us that using solely 

public financial stress index is not enough to provide warning flags for crises. In 

comparison with benchmark-based measures, results also document that our measures 
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shows earlier breakpoints across sectors, by 16, 7, 1, and 4 months for Depositories, 

Broker-Dealers, Insurance Companies, and Others. As for other two risk indicators 

(NoD and ESR), the break dates identified by our measures always lead to those by 

the benchmark and STLFSI especially when we use information from sectors of 

Broker-Dealers or Insurance Companies. This result suggests that considering tail 

dependence effects other than common factor does provide extra power of forecasting 

upcoming distress, and the information within Broker-Dealers are more useful to 

forecast financial distress.  

As for the level test (Panel B of Table 5), we still find stronger evidence that our 

measures lead (concur) to benchmark-based ones by 8 out of 12 cases (2 out of 12 

cases), where our DD measures always lead to the benchmark across sectors. In terms 

of the lead-lag relationship between our measures and STLFSI, we find the DD 

measure on Broker-Dealers is the best one by leading the public index up to 4 months. 

Overall the results provided here point out that our DD measures are the best risk 

indicators. Among different financial sectors, the information from Broker-Dealers is 

mostly useful in forecasting future financial distress. Our measures behavior as the 

leading indicator to the public financial stress index, and should be able to serve as 

early detection of vulnerabilities in the financial system, is useful for regulators by 

earning extra time to prepare contingency plans.  

[Insert Table 5 Here] 

 

6. Robustness Test 

We consider two robustness checks for predictive analysis, including (1) 

changing trimming criteria on breakpoint tests; and (2) applying for alternative 

breakpoint test methodology. 
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6.1.  The 30% trimming criterion on breakpoint test 

We concern that under 25% trimming, the test sample covers part of post-crisis 

period (the first half year of 2009) and could still give breakpoints as crisis is about to 

be ended, instead of the ones as crisis is just starting. Since our aim is to investigate 

whether our measures are capable of providing early warning signals, in a more 

conservative way, we use 30% trimming percentage, where the test sample is ended at 

December 2008. The results are documented in Table 6. For level test, results are 

completely the same as previous evidence. For persistence test, there are changes for 

some cases, but overall it still gives support that our measures lead to 

benchmark-based measures and our best DD measures leads STLFSI by up to three 

years.  

[Insert Table 6 Here] 

 

6.2. Bai and Perron breakpoint test  

    We apply alternative methodology proposed by Bai and Perron (1998, 2003) to 

identify structural breaks. We re-examine breakpoints tests implemented in the main 

content (with 25% trimming percentage), and report in Table 7 In general our results 

are hardly changed. Specifically for the level test, all breakpoints are dated one month 

prior to those identified based on QA test, and thus lead-lag relationships are the same 

as before. For the persistence test, Bai and Perron test gives breakpoints two months 

prior to those identified by QA test across measures, and lead-lag relationships are 

almost the same as previous results.  

 

[Insert Table 7 Here] 
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7. Conclusion 

There is growing evidence suggesting that systemic risk has at least two main 

driving forces. On the one hand there is a common-factor exposure to market-wide 

shocks. On the other, there is a tail dependence effects factor arising from linkages 

among extreme stock returns. The way to model the relative importance of these two 

factors is a research topic of paramount importance. We contribute to this strand of the 

literature proposing a new structural-form model which includes both factors. In our 

framework, the common factor component is based on the correlations of individual 

stock returns with the aggregate macro common factor. The tail dependence effects 

component is proxied by a correlated jumps factor. The model gives empirical 

implications that are consistent with the extant evidence at hand and in particular 

gives the prediction that simultaneous extreme negative movements across large 

financial institutions are stronger in bear markets than in bull markets. 

The empirical application based on stock market data on the four sectors of the 

U.S. financial industry during 1996-2011 suggests that ignoring the effect of the tail 

dependence effects component underestimate the measurement of the level of 

systemic risk. Taking into account tail dependence effects factor provides extra power 

of forecasting in comparison with the benchmark model. Also, not all sectors provide 

equally valuable systemic risk indicators. Two measures (DD, NoD) based on the 

Broker-Dealers sector and one measure (ESR) based on the Insurance sector 

systematically lead the St. Louis Fed Financial Stress Index (STLFSI).   

Looking forward, comparison of our measures with other measures based on 

alternative asset markets is certainly worth of attention. The way to use our measures 

for asset pricing, hedging strategies, portfolio diversification, and risk management 

purposes is another topic that is left for future research. 
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Appendix 

Appendix A1  

We apply the theorem of the law of total variance, which is 

     | |X XVar Y E Var Y X Var E Y X        . In our case, we have 
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Finally we assume all random variables appeared in asset-log-return process (Eq. (1)) 

are all independent. Therefore we can derive the variance of asset return as follows. 

  2 2 2

, 1 ,
ˆ|j t t j t j t j jVar v h b         ,             (A3) 

where 2 2 2ˆ
j j jb a b  . 

Appendix A2  

    Since kQ  are normally IID random variables and distributed independently of 

 N T , by iterated expectations, 
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Appendix B 

Type Name of Company Start date End date # of observations SIZE (million) LVG 

Depositories 'BANK OF AMERICA CORP' 199601 201112 181 13.556 9.194 

Depositories 'BANK OF NEW YORK MELLON CORP' 200310 201112 55 12.037 5.709 

Depositories 'BANK ONE CORP' 199601 200406 91 12.101 5.949 

Depositories 'BANKAMERICA CORP-OLD' 199601 199809 22 12.391 7.568 

Depositories 'BANKERS TRUST CORP' 199601 199905 30 11.693 16.393 

Depositories 'BB&T CORP' 200401 201112 72 11.745 7.345 

Depositories 'CITICORP' 199601 199809 22 12.510 6.568 

Depositories 'FIFTH THIRD BANCORP' 200308 200708 20 11.473 4.391 

Depositories 'FIRST CHICAGO NBD CORP' 199601 199809 22 11.639 7.736 

Depositories 'FLEETBOSTON FINANCIAL CORP' 199604 200403 69 11.846 5.777 

Depositories 'GOLDEN WEST FINANCIAL CORP' 200501 200609 10 11.585 6.224 

Depositories 'JPMORGAN CHASE & CO' 199601 201112 181 13.565 10.194 

Depositories 'KEYCORP' 199712 200408 27 11.294 7.799 

Depositories 'MORGAN (J P) & CO' 199601 200012 49 12.383 12.952 

Depositories 'NATIONAL CITY CORP' 199807 200812 109 11.614 6.439 

Depositories 'PNC FINANCIAL SVCS GROUP INC' 199711 201112 47 12.049 8.966 

Depositories 'REGIONS FINANCIAL CORP' 200704 201112 46 11.856 17.872 

Depositories 'STATE STREET CORP' 200305 201112 50 11.875 8.214 

Depositories 'SUNTRUST BANKS INC' 199904 201112 142 11.829 9.124 

Depositories 'U S BANCORP' 200107 201112 115 12.260 5.103 

Depositories 'U S BANCORP/DE-OLD' 200010 200205 9 11.369 4.466 

Depositories 'WACHOVIA CORP' 199601 200812 145 12.586 6.926 

Depositories 'WASHINGTON MUTUAL INC' 199801 200808 117 12.334 8.449 

Depositories 'WELLS FARGO & CO -OLD' 199610 199810 14 11.572 4.678 

Depositories 'WELLS FARGO & CO' 199601 201112 165 12.771 5.456 

Broker-Dealers 'AMERIPRISE FINANCIAL INC' 200604 201112 58 11.560 11.357 

Broker-Dealers 'AXA FINANCIAL INC' 199601 200012 49 11.872 18.052 

Broker-Dealers 'BEAR STEARNS COMPANIES INC' 199601 200805 138 12.091 27.973 

Broker-Dealers 'BLACKROCK INC' 200701 201112 49 10.378 3.734 

Broker-Dealers 'CITIGROUP GLOBAL MKTS HLDGS' 199601 199710 11 12.095 41.126 

Broker-Dealers 'CREDIT SUISSE USA INC' 199604 200010 44 11.085 18.551 

Broker-Dealers 'DAIN RAUSCHER CORP' 199601 199702 3 7.725 8.450 

Broker-Dealers 'E TRADE FINANCIAL CORP' 200002 201112 132 10.338 14.236 

Broker-Dealers 'EDWARDS (A G) INC' 199601 200207 49 8.304 1.880 

Broker-Dealers 'FRANKLIN RESOURCES INC' 199601 200702 56 8.805 1.194 

Broker-Dealers 'GOLDMAN SACHS GROUP INC' 199909 201112 137 13.195 11.249 

Broker-Dealers 'INTERACTIVE BROKERS GROUP' 200710 201112 40 10.300 36.641 

Broker-Dealers 'JEFFERIES GROUP INC' 200107 201112 97 9.717 7.315 

Broker-Dealers 'LEGG MASON INC' 200104 200311 19 8.614 2.492 

Broker-Dealers 'LEHMAN BROTHERS HOLDINGS INC' 199601 200808 141 12.393 22.165 

Broker-Dealers 'MERRILL LYNCH & CO INC' 199601 200812 145 12.947 12.367 

Broker-Dealers 'MORGAN STANLEY' 199601 201112 181 13.173 14.750 

Broker-Dealers 'PAINE WEBBER GROUP' 199601 200010 47 10.921 16.013 

Broker-Dealers 'QUICK & REILLY GROUP INC' 199603 199801 12 8.117 5.102 

Broker-Dealers 'RAYMOND JAMES FINANCIAL CORP' 199703 201112 102 8.975 5.428 

Broker-Dealers 'SCHWAB (CHARLES) CORP' 199604 201112 178 10.452 3.052 

Broker-Dealers 'SWS GROUP INC' 199707 200202 15 8.316 14.279 

Broker-Dealers 'TD AMERITRADE HOLDING CORP' 200301 201112 94 9.667 2.903 

Broker-Dealers 'TD WATERHOUSE GROUP INC' 199911 200110 13 9.238 2.259 

Insurance Companies 'AETNA INC' 199601 200011 48 11.476 9.204 

Insurance Companies 'AFLAC INC' 200904 201112 22 11.314 4.714 

Insurance Companies 'ALLSTATE CORP' 199607 201112 175 11.666 5.097 

Insurance Companies 'AMERICAN GENERAL CORP' 199601 200107 56 11.336 7.109 

Insurance Companies 'AMERICAN INTERNATIONAL GROUP' 199601 201112 181 13.028 36.671 

Insurance Companies 'CIGNA CORP' 199601 200508 105 11.479 9.051 

Insurance Companies 'CNA FINANCIAL CORP' 199601 200302 63 11.049 9.223 

Insurance Companies 'CNO FINANCIAL GROUP INC' 200001 200108 7 10.826 15.516 

Insurance Companies 'GENERAL RE CORP' 199601 199705 6 10.476 3.369 

Insurance Companies 'GENWORTH FINANCIAL INC' 200410 201112 76 11.587 23.942 

Insurance Companies 'HANCOCK JOHN FINL SVCS INC' 200007 200403 34 11.399 9.408 

Insurance Companies 'HARTFORD FINANCIAL SERVICES' 199604 201112 178 12.231 19.248 

Insurance Companies 'HARTFORD LIFE INC  -CL A' 199710 200005 21 11.566 83.438 

Insurance Companies 'LINCOLN NATIONAL CORP' 199601 201112 181 11.627 15.279 

Insurance Companies 'LOEWS CORP' 199601 201002 106 11.185 7.264 

Insurance Companies 'METLIFE INC' 200010 201112 124 12.878 13.855 



40 
 

Insurance Companies 'NATIONWIDE FINL SVCS  -CL A' 199807 200812 115 11.490 68.231 

Insurance Companies 'PRINCIPAL FINANCIAL GRP INC' 200204 201112 106 11.706 13.231 

Insurance Companies 'PROVIDIAN CORP' 199601 199702 3 10.179 6.585 

Insurance Companies 'PRUDENTIAL FINANCIAL INC' 200204 201112 106 12.903 17.108 

Insurance Companies 'TRANSAMERICA CORP' 199601 199805 12 10.782 9.311 

Insurance Companies 'TRAVELERS COS INC' 199610 201112 85 11.542 5.642 

others 'AMERICAN EXPRESS CO' 199601 201112 181 11.817 3.668 

others 'ANNALY CAPITAL MANAGEMENT' 200207 201112 55 10.721 7.537 

others 'APARTMENT INVST & MGMT CO' 200204 200308 6 9.102 2.843 

others 'ASSOCIATES FIRST CAP -CL A' 199610 200011 39 10.991 6.809 

others 'BENEFICIAL CORP' 199601 199806 19 9.670 5.548 

others 'CAPITAL ONE FINANCIAL CORP' 200007 201112 127 11.083 5.916 

others 'CAPSTEAD MORTGAGE CORP' 199601 200205 40 9.256 18.884 

others 'CIT GROUP INC' 200301 201112 81 10.998 10.818 

others 'CIT GROUP INC-OLD' 199804 200105 27 10.143 11.133 

others 'CITIGROUP INC' 199601 201112 181 13.683 13.404 

others 'CME GROUP INC' 200901 201112 25 10.546 1.644 

others 'COUNTRYWIDE FINANCIAL CORP' 199601 200806 139 10.463 5.476 

others 'DEAN WITTER DISCOVER & CO' 199601 199705 6 10.476 4.333 

others 'DISCOVER FINANCIAL SVCS INC' 200712 201112 38 10.677 6.766 

others 'FANNIE MAE' 199601 201006 163 13.400 84.908 

others 'FEDERAL HOME LOAN MORTG CORP' 199604 201006 160 13.097 125.524 

others 'FINOVA GROUP INC' 199601 200201 44 9.147 23.722 

others 'FIRST USA INC' 199601 199705 6 8.864 3.004 

others 'GENERAL GROWTH PPTYS INC' 200504 201111 11 10.223 5.368 

others 'HELLER FINANCIAL INC' 199810 200109 25 9.679 15.190 

others 'HOST HOTELS & RESORTS INC' 200107 200305 12 9.025 3.650 

others 'HSBC FINANCE CORP' 199601 200302 75 10.739 3.684 

others 'IMPAC MORTGAGE HOLDINGS INC' 200603 200705 4 10.231 37.595 

others 'INTERCONTINENTALEXCHANGE INC' 201101 201112 1 10.248 3.902 

others 'MF GLOBAL HOLDINGS LTD' 200801 201109 34 10.828 65.259 

others 'NELNET INC' 200708 201112 17 10.246 43.709 

others 'NEW CENTURY FINANCIAL CORP' 200601 200701 2 10.278 13.369 

others 'SIMON PROPERTY GROUP INC' 199901 201102 58 9.564 3.249 

others 'SLM CORP' 200210 201112 100 11.578 16.639 

others 'STUDENT LOAN CORP' 199607 201012 83 9.841 11.464 

others 'THORNBURG MORTGAGE INC' 200310 200811 51 10.414 15.003 
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Table 1. Summary Statistics. 

The table reports summary statistics of several risk measures for each sector of the financial industry 

from December 1996 to December 2011, totalizing 181 monthly observations. The SIZE (in million) is 

the logarithm of aggregated total assets on the ten biggest firms in each sector. The LVG is the 

quasi-market value of assets divided by market value of equity, weighted averaged based on values of 

market equity. The RET is the annualized return. DD, NoD, and ESR (scaled by multiplying 106) are 

systemic risk measures. The subindex “ben” identify measures computed from the benchmark model 

(without co-jumps term).   
Sector Statistics SIZE LVG RET DD NoD ESR DDben NoDben ESR_ben 

Depositories Min 14.380  4.890  -0.530  -0.240  0.000  0.000 1.120 0.000 0.000 

 Max 15.800  34.040  1.760  16.230  8.030  69.255 16.730 3.860 9.475 

 Mean 15.140  7.940  0.090  6.310  0.790  4.503 8.000 0.260 0.343 

 Median 15.070  6.910  0.070  5.900  0.010  0.020 7.430 0.000 0.000 

  Std 0.440  3.400  0.260  3.930  1.720  11.765 4.030 0.650 1.123 

Broker-Dealers Min 13.760  6.240  -0.540  -0.660  0.000  0.005 0.020 0.000 0.000 

 Max 15.350  40.050  1.380  8.440  6.110  208.445 16.700 5.250 29.956 

 Mean 14.540  12.260  0.210  2.590  2.260  22.221 6.010 0.960 2.614 

 Median 14.470  10.960  0.160  1.980  2.140  6.334 5.140 0.790 0.693 

  Std 0.390  4.800  0.390  2.110  1.820  39.363 3.800 1.060 4.785 

Insurance Com. Min 13.450  4.140  -0.540  0.910  0.000  0.000 0.390 0.000 0.000 

 Max 15.020  82.960  2.200  21.230  5.390  41.335 26.290 3.220 22.541 

 Mean 14.460  11.930  0.120  10.990  0.360  3.757 12.180 0.230 1.421 

 Median 14.600  7.620  0.120  10.870  0.000  0.000 11.880 0.000 0.000 

  Std 0.470  14.160  0.340  4.570  1.010  10.084 5.380 0.580 4.281 

Others Min 13.450  4.310  -0.670  -0.780  0.000  0.001 -1.970 0.000 0.000 

 Max 15.390  173.300  1.900  7.390  8.900  288.020 11.260 6.770 211.190 

 Mean 14.810  11.220  0.110  3.450  2.380  39.902 5.510 1.420 15.074 

 Median 14.890  7.690  0.110  3.750  1.450  3.699 6.040 1.000 0.919 

  Std 0.490  16.920  0.340  2.170  2.400  78.679 3.150 1.730 39.273 
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Table 2. Estimation results: co-jumps   

The column 1, 3, and 5 show average values of λ, mu_coj, and std_coj during “Pre-Crisis”, “Crisis”, 

and “Post-Crisis” periods respectively. We define “Pre-Crisis” as from July 2005 to June 2007, “Crisis” 

as from July 2007 to June 2009, and “Post-Crisis” as from July 2009 to June 2011. Each period consists 

of 24 number of observations. The column 2 and 4 report results of independent samples t-test where 

the null hypothesis is the means of the two groups are equal. For each parameter, the column 2 (the 

column 4) first reports the difference of average values of Crisis and of Pre-Crisis (of Post-Crisis) along 

with P-values in brackets. Panel A, B, C, and D shows results for Depositories, Broker-Dealers, 

Insurance Companies, and Others respectively. 

  Pre-Crisis 

(1) 

Crisis versus Pre-Crisis 

(2) 

Crisis 

(3) 

Crisis versus Post-Crisis 

(4) 

Post-Crisis 

(5) 

Panel A: Depositories             

λ 0.0394 0.0964  
*** 

0.1358 0.0828  
*** 

0.0530 

 
 

(<0.0001)  
 

(0.0015)   
 

mu_coj 0.0049 -0.0135  
*** 

-0.0086 -0.0078  
* 

-0.0008 

 
 

(0.0007)   
 

(0.1039)   
 

std_coj 0.0178 0.0653  
*** 

0.0831 0.0128   0.0702 

 
 

(<0.0001)  
 

(0.3478)   
 

Panel B: Broker-Dealers     

     

 
λ 0.0347 0.0258  

** 
0.0606 0.0074   0.0532 

 
 

(0.0244)   
 

(0.5427)   
 

mu_coj 0.0030 -0.0162  
** 

-0.0132 -0.0101   -0.0031 

 
 

(0.0476)   
 

(0.2235)   
 

std_coj 0.0318 0.0535  
*** 

0.0853 0.0256  
*** 

0.0597 

 
 

(<0.0001)  
 

(0.0054)   
 

Panel C: Insurance Companies 
  

     

 
λ 0.0713 0.0561  

*** 
0.1274 0.0626  

*** 
0.0648 

 
 

(0.0030)   
 

(0.0011)   
 

mu_coj 0.0013 -0.0041  
*** 

-0.0028 -0.0024  
** 

-0.0004 

 
 

(<0.0001)  
 

(0.0177)   
 

std_coj 0.0206 0.0634  
*** 

0.0840 -0.0002   0.0842 

 
 

(<0.0001)  
 

(0.9896)   
 

Panel C: Others     

     

 
λ 0.1003 0.0963  

*** 
0.1967 0.1026  

*** 
0.0941 

 
 

(0.0015)   
 

(0.0031)   
 

mu_coj -0.0008 -0.0222  
** 

-0.0230 -0.0234  
** 

0.0004 

 
 

(0.0187)   
 

(0.0160)   
 

std_coj 0.0273 0.1029  
*** 

0.1302 0.0483  
*** 

0.0820 

  
 

(<0.0001) 
  

 
(0.0081)  

  

 

 

Table 3. Estimation results: structural-form parameters. 

The table reports average values of estimated parameters from our structural-form model and the 

benchmark model (along with the notation “ben”). The sample period spans from December 1996 to 

December 2011, containing 181 number of observations. The reported numbers in μ, μ_ben, ξ, and ξ_ben 

are 10000 times of raw numbers. The “diff.” stands for the testing results of independent samples t-test 

where the null hypothesis is the means of the two groups are equal, for each pair of parameters. The 

column 3, 6, and 9 first report differences of average values of estimated parameters, along with 

P-value in brackets.   

Sector 

μ 

(1) 

μ_ben 

(2) 

diff. 

(3)   

δ 

(4) 

δ_ben 

(5) 

diff. 

(6)   

ξ 

(7) 

ξ_ben 

(8) 

diff. 

(9) 
  

Depositories 0.9996  0.9247  0.0749  
 

0.4486  0.5193  -0.0707  *** 0.2714  0.4960  -0.2246  *** 

 
  

(0.8814)  

   

(<0.0001) 
   

(<0.0001)  

Broker-Dealers 2.8938  3.1188  -0.2250  
 

0.5945  0.6326  -0.0381  *** 0.5957  1.0429  -0.4472  *** 

 
  

(0.6611)  

   

(0.0012)  
   

(<0.0001)  

Insurance Companies -0.9960  -0.1626  -0.8334  
 

0.7224  0.7842  -0.0618  *** 0.5299  1.5100  -0.9800  *** 

 
  

(0.2683)  

   

(0.0003)  
   

(<0.0001)  

Others 2.7060  3.2008  -0.4948  
 

0.3534  0.4157  -0.0622  *** 0.1897  0.8126  -0.6229  *** 

      (0.2911)        (<0.0001) 
      (<0.0001) 
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Table 4. Granger causality test 1996-2011 

The table reports results of Granger Causality tests of full-model (FM) systemic risk indicators to the 

benchmark-based ones, and the public financial stress index, STLFSI. The testing sample contains 181 

monthly observations spanning from December 1996 to December 2011. Panel A and B are results 

based on levels and first differences respectively. We implement tests for each risk indicator across 

industries. Four industries are classified as Depositories, Broker-Dealers, Insurance Companies, and 

Others. The Column 1 and 2 (3 and 4) shows results of whether our systemic risk indicators granger 

cause to benchmark-based measures (STLFSI) and their corresponding reverse direction. Granger 

Causality tests with lag-lengths selected according to the rule of the Schwarz criterion, and 

heteroskedastic and correlated errors are corrected. For each test, the p-value is reported in bracket, and 

the lag-length of VAR is also reported for statistically significant cases. Moreover ***, **, and * are 

significant at 1, 5, and 10 percent level respectively. 
 

  
FM leads Benchmark Benchmark leads FM FM leads STLFSI STLFSI leads FM 

 (1) (2) (3) (4) 

Measure Sector  P-value   P-value   P-value   P-value   

Panel A: levels  

DD Depositories (0.009) *** lag(1) (0.695) 
 

(0.015) ** lag(1) (0.105)  
 

 Broker-Dealers (0.001) *** lag(1) (0.305) 
 

(0.001) *** lag(1) (0.588) 
 

 Insurance Com. (0.005) *** lag(1) (0.502) 
 

(0.046) ** lag(2) (0.015) ** lag(2) 

 Others (0.000) *** lag(1) (0.218) 
 

(0.094) * lag(1) (0.016) ** lag(1) 

NoD Depositories (0.001) *** lag(6) (0.000)***  lag(6) (0.912) 
 

(0.005) *** lag(1) 

 Broker-Dealers (0.009) *** lag(1) (0.547) 
 

(0.026) ** lag(2) (0.986) 
 

 Insurance Com. (0.000) *** lag(5) (0.188)  
 

(0.014) ** lag(2) (0.039) ** lag(2) 

 Others (0.000) *** lag(1) (0.111) 
 

(0.146) 
 

(0.943) 
 

ESR Depositories (0.047) ** lag(2) (0.802)  
 

(0.249) 
 

(0.001) *** lag(2) 

 Broker-Dealers (0.000) *** lag(1) (0.216) 
 

(0.366) 
 

(0.325) 
 

 Insurance Com. (0.000) *** lag(2) (0.063) * lag(2) (0.017) ** lag(2) (0.104) 
 

 Others (0.000) *** lag(1) (0.249) 
 

(0.718) 
 

(0.167) 
 

Panel B: first differences 

DD Depositories (0.014) ** lag(1) (0.342) 
 

(0.450) 
 

(0.017) ** lag(1) 

 Broker-Dealers (0.013) ** lag(2) (0.119) 
 

(0.006) *** lag(1) (0.909) 
 

 Insurance Com. (0.529)  
 

(0.590) 
 

(0.024) ** lag(1) (0.211) 
 

 Others (0.002) *** lag(2) (0.199) 
 

(0.798) 
 

(0.177) 
 

NoD Depositories (0.045) ** lag(2) (0.000)***  lag(2) (0.501) 
 

(0.443)  
 

 Broker-Dealers (0.034) ** lag(1) (0.696) 
 

(0.009) *** lag(1) (0.943) 
 

 Insurance Com. (0.000) *** lag(4) (0.088) * lag(4) (0.017) ** lag(4) (0.117) 
 

 Others (0.050) ** lag(1) (0.852) 
 

(0.880) 
 

(0.922) 
 

ESR Depositories (0.025) ** lag(1) (0.776)   
 

(0.378) 
 

(0.025) ** lag(1) 

 Broker-Dealers (0.000) *** lag(2) (0.289) 
 

(0.239) 
 

(0.344) 
 

 Insurance Com. (0.109)  
 

(0.115)  
 

(0.009) *** lag(1) (0.511) 
 

 Others (0.021) ** lag(3) (0.405) 
 

(0.736) 
 

(0.441) 
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Table 5. Early turning points: Quandt-Andrews breakpoint test 

The table reports turning points for each of our systemic risk measures, and its lead-lag relationship 

with benchmark-based measures and with the STLFSI. We use Quandt-Andrews breakpoint test on 

both the persistence and the level by means of autoregressive regressions:
1t s t t

X c X 


   . In the test, 

we consider the 25% trimming percentage on the sample period of 2002-2011, and thus the test sample 

is from July 2004 to June 2009 with number of breaks compared of 60. We document break dates of 

our measures for tests on the persistence and on the level in first column of Panel A and Panel B 

respectively. Furthermore, results document that break points of STFSI is January 2009 and November 

2007 for tests on persistence and level separately. We also analyze how our measures lead or lag to 

benchmark-based measures and to the STLFSI. They are deployed along with items of “Lead-Lag (vs. 

benchmark)” and “Lead-Lag (vs. STLFSI)”. Furthermore, we use the positive sign of “+” (the negative 

sign “-”) to indicate our measures lead (lag) to alternative measures, and the numbers nearby signs are 

their corresponding leading (lagged) numbers of months. Black boldface values represent that our 

measures are earlier than or concurrent with those from alternative measures.  

Indicators Type 

Break  Lead-Lag  Lead-Lag  Break  Lead-Lag  Lead-Lag  

Date (vs. benchmark) (vs. STLFSI) Date (vs. benchmark) (vs. STLFSI) 

(1) (2) (3) (4) (5) (6) 

    Panel A: Persistence (ρs) test  Panel B: Level (c) test 

DD Depositories Feb-06 +16 +35 Sep-07 +3 +2 

 
Broker-Dealer Mar-06 +7 +34 Jul-07 +4 +4 

 
Insurance Companies Jun-07 +1 +19 Jan-08 +1 -2 

  Others Feb-07 +4 +23 Sep-07 +2 +2 

NoD Depositories Mar-09 0 -2 Mar-08 -3 -4 

 
Broker-Dealer Oct-06 +12 +27 Aug-07 +2 +3 

 
Insurance Companies Nov-08 +1 +2 Sep-08 0 -10 

  Others Apr-09 -1 -3 Sep-07 +2 +2 

ESR Depositories Feb-09 +1 -1 Jun-08 -3 -7 

 
Broker-Dealer Nov-08 +1 +2 Mar-08 +2 -4 

 
Insurance Companies Oct-08 +1 +3 Sep-08 0 -10 

  Others Apr-09 -1 -3 Nov-07 +10 0 

 

Table 6. Turning Points Tests on 30% trimming percentage: Quandt-Andrews test 

The table reports turning points for each of our systemic risk measures, and its lead-lag relationship 

with benchmark-based measures and with the STLFSI. We use Quandt-Andrews breakpoint test on 

both the persistence and the level by means of autoregressive regressions:
1t s t t

X c X 


   . In the test, 

we consider the 30% trimming percentage on the sample period of 2002-2011, and thus the test sample 

is from January 2005 to December 2008 with number of breaks compared of 48. We document break 

dates of our measures for tests on the persistence and on the level in first column of Panel A and Panel 

B respectively. Furthermore, results document that break points of STFSI is November 2008 and 

November 2007 for tests on persistence and level separately. We also analyze how our measures lead or 

lag to benchmark-based measures and to the STLFSI. They are deployed along with items of 

“Lead-Lag (vs. benchmark)” and “Lead-Lag (vs. STLFSI)”. Furthermore, we use the positive sign of 

“+” (the negative sign “-”) to indicate our measures lead (lag) to alternative measures, and the numbers 

nearby signs are their corresponding leading (lagged) numbers of months. Black boldface values 

represent that our measures are earlier than or concurrent with those from alternative measures.  

Indicators Type 

Break  Lead-Lag  Lead-Lag  Break  Lead-Lag  Lead-Lag  

Date (vs. benchmark) (vs. STLFSI) Date (vs. benchmark) (vs. STLFSI) 

(1) (2) (3) (4) (5) (6) 

    Panel A: Persistence (ρs) test  Panel B: Level (c) test 

DD Depositories Feb-06 +16 +33 Sep-07 +3 +2 

 
Broker-Dealer Mar-06 +7 +32 Jul-07 +4 +4 

 
Insurance Companies Jun-07 +1 +17 Jan-08 +1 -2 

  Others Feb-07 +4 +21 Sep-07 +2 +2 

NoD Depositories Aug-08 -1 +3 Mar-08 -3 -4 

 
Broker-Dealer Oct-06 +12 +13 Aug-07 +2 +3 

 
Insurance Companies Nov-08 +1 0 Sep-08 0 -10 

  Others Nov-08 0 0 Sep-07 +2 +2 

ESR Depositories Dec-08 0 -1 Jun-08 -3 -7 

 
Broker-Dealer Nov-08 +1 0 Mar-08 +2 -4 

 
Insurance Companies Oct-08 +1 +1 Sep-08 0 -10 

  Others Dec-08 0 -1 Nov-07 +10 0 
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Table 7. Early turning points on 25% trimming percentage: Bai and Perron test  

The table reports turning points for each of our systemic risk measures, and its lead-lag relationship 

with benchmark-based measures and with the STLFSI. We use Bai and Perron breakpoint test on both 

the persistence and the level by means of autoregressive regressions:
1t s t t

X c X 


   . In the test, we 

consider the 25% trimming percentage on the sample period of 2002-2011, and thus the test sample is 

from July 2004 to June 2009 with number of breaks compared of 60. We document break dates of our 

measures for tests on the persistence and on the level in first column of Panel A and Panel B 

respectively. Furthermore, results document that break points of STFSI is November 2008 and October 

2007 for tests on persistence and level separately. We also analyze how our measures lead or lag to 

benchmark-based measures and to the STLFSI. They are deployed along with items of “Lead-Lag (vs. 

benchmark)” and “Lead-Lag (vs. STLFSI)”. Furthermore, we use the positive sign of “+” (the negative 

sign “-”) to indicate our measures lead (lag) to alternative measures, and the numbers nearby signs are 

their corresponding leading (lagged) numbers of months. Black boldface values represent that our 

measures are earlier than or concurrent with those from alternative measures.  

Indicators Type 

Break  Lead-Lag  Lead-Lag  Break  Lead-Lag  Lead-Lag  

Date (vs. benchmark) (vs. STLFSI) Date (vs. benchmark) (vs. STLFSI) 

(1) (2) (3) (4) (5) (6) 

    Panel A: Persistence (ρs) test  Panel B: Level (c) test 

DD Depositories Dec-05 +16 +35 Aug-07 +3 +2 

 Broker-Dealer Jan-06 +7 +34 Juln07 +4 +4 

 Insurance Companies Apr-07 +1 +19 Dec-07 +1 -2 

  Others Dec-06 +4 +23 Aug-07 +2 +2 

NoD Depositories Jan-09 0 -2 Feb-08 -3 -4 

 Broker-Dealer Aug-06 +12 +27 Jul-07 +3 +3 

 Insurance Companies Sep-08 +1 +2 Aug-08 0 -10 

 
Others Feb-09 -1 -3 Aug-07 +2 +2 

ESR Depositories Dec-08 +1 -1 May-08 -3 -7 

 Broker-Dealer Sep-08 +1 +2 Feb-08 +2 -4 

 Insurance Companies Aug-08 +1 +3 Aug-08 0 -10 

  Others Feb-09 -1 -3 Oct-07 +10 0 
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Fig. 1. Annualized equity returns by sector. The figure shows annualized equity returns, 

calculated by summing daily returns over the past one year at the end of every month, spanning 

from December 1996 to December 2011. The blue, red, green, and yellow lines represent 

Depositories, Broker-Dealers, Insurance Companies, and Others respectively. The black line 

represents the annual return on CRSP value-weighted index.  

 

 

 

 
Fig 2. Jump process parameters. The figure shows the three time series obtained from the estimation 

of co-jumps in each sector. The result is plotted at the end of each rolling window sample, and thus 

there are 181 monthly observations for each time series. The blue, red, and green lines represent λ (the 

intensity of co-jumps), mu_coj (the average value of jump size on ten big financial institutions), and 

std_coj (the average value of standard deviation of jump size on ten big financial institutions).   
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Panel A: DD 

 

 
Panel B: NoD 

Fig. 3. This figure plots three alternative systemic risk measures, DD and NoD, and ESR from during 1996-2011, by industry. The DD (Panel A) is the average 

distance-to-default, and the NoD (Panel B) is the expected number of defaults over the following six months. The red and blue line represent measures derived from our 

model and the benchmark. (Conti. 
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Panel C: ESR 

Fig. 3 (Conti.). This figure plots an alternative systemic risk measure, ESR, from during 1996-2011, by industry. The ESR (Panel C) is the ratio of the aggregate present value 

of expected shortfalls to the aggregate asset value. The red and blue line represent measures derived from our model and the benchmark respectively.  
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Fig. 4. This figure contains monthly data of the St. Louis Fed Financial Stress Index (STLFSI), from 

12/1996 to 12/2011.  
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